Refine Your Search

Topic

Author

Search Results

Technical Paper

Compatibility between Brake Discs and Friction Materials in DTV Generation and Recovery Test

2005-10-09
2005-01-3918
A comparative study was carried out to investigate the DTV (disk thickness variation) behavior according to the types of brake disks (gray iron grade 250 and high-carbon gray iron grade 200, 170) with two typical friction materials (non-steel and low-steel friction materials). To evaluate DTV generation and recovery characteristics, a parasitic drag mode simulating highway driving (off-brake) and a normal braking mode simulating city traffic driving (on-brake) were used with an inertia brake dynamometer. Results showed that DTV and BTV were strongly affected by the microstructure, hardness level and distribution of the gray cast iron with the friction material types. The BTV was reduced in the friction two pairs using non-steel friction materials with high carbon grade disks and low-steel friction materials with high-carbon, low hardness disk. In particular, the pair of low-steel friction materials and high-carbon, low-hardness brake disks was more effective on DTV recovery.
Technical Paper

Premixed Combustion Modeling in an SI Engine Considering the Burned Gas Composition

2005-05-11
2005-01-2108
Conventional combustion models are suitable for predicting flame propagation for a wrinkled flamelet configuration. But they cannot predict the burned gas composition. This causes the overestimation of burned gas temperature and pressure. A modified method of combustion simulation was established to calculate the chemical composition and to investigate their ultimate fate in the burned gas region. In this work, the secondary products of combustion process, like CO and H2, were considered as well as the primary products like CO2 and H2O. A 3-dimensional CFD program was used to simulate the turbulent combustion and a zero dimensional equilibrium code was used to predict the chemical composition of burned gas. With this simple connection, more reasonable temperature and pressure approaching the real phenomena were predicted without additional time costs.
Technical Paper

Development of Hyundai's Tucson FCEV

2005-04-11
2005-01-0005
Hyundai Motor Company developed its second-generation fuel cell hybrid electric vehicle (FCEV) based on its small Tucson SUV. Compared to Hyundai's first generation fuel cell vehicle, the Santa Fe FCEV, the Tucson FCEV has an extended driving range plus cold weather starting capability. It incorporates numerous technical advances including a fuel cell that operates at sub-zero temperatures and a new high voltage lithium ion polymer battery. Using both a fuel cell and a high voltage battery as sources for driving energy, the Tucson hybrid system provides optimum driving conditions, which ensures high tank to wheel efficiency. The Tucson FCEV's power plant has been located in the front - under the front hood - unlike its predecessor Santa Fe FCEV, which featured an under-floor installation. More importantly, Tucson FCEV's driving range has been extended to 300km thanks to its 152-liter hydrogen storage tanks.
Technical Paper

Combustion Process Analysis in a HSDI Diesel Engine Using a Reduced Chemical Kinetics

2004-03-08
2004-01-0108
The combustion characteristics of a HSDI diesel engine were analyzed numerically using a reduced chemical kinetics. The reaction mechanism consisting of 26 steps and 17 species including the Zel'dovich NOx mechanism for the higher hydrocarbon fuel was implemented in the KIVA-3V. The characteristic time scale model was adopted to account for the effects of turbulent mixing on the reaction rates. The soot formation and oxidation processes are represented by Hiroyasu's model and NSC's model. The validation cases include the homogenous fuel/air mixture and the spray combustion in a constant volume chamber. After the validation, the present approach was applied to the analysis of the spray combustion processes in a HSDI diesel engine. The present approach reasonably well predicts the ignition delay, combustion processes, and emission characteristics in the high-pressure turbulent spray flame-field encountered in the practical HSDI diesel engines.
Technical Paper

Suppression of Open-Jet Pressure Fluctuations in the Hyundai Aeroacoustic Wind Tunnel

2004-03-08
2004-01-0803
Peak pressure fluctuation amplitudes in the ¾ open-jet test-section of the Hyundai Aeroacoustic Wind Tunnel have been reduced from root-mean-square levels equal to 6% of the test-section dynamic pressure to levels of less than 0.5% over almost the full wind speed range of the tunnel. The improvement was accomplished using a retrofit of the test-section collector. Using an analysis of the physics of the problem, it was found that the HAWT pressure fluctuations could be accurately modeled as a resonance phenomenon in which acoustic modes of the full wind tunnel circuit are excited by a nozzle-to-collector edgetone-feedback loop. Scaling relations developed from the theory were used to design an experiment in 1/7th scale of the HAWT circuit, which resulted in the development of the new collector design. Data that illustrate the benefit of the reduction in pressure fluctuation amplitudes on passenger-car aerodynamic force measurements are presented.
Technical Paper

The Characteristics of TPE for Skin of Automotive Instrument Panel

2002-03-04
2002-01-0313
In order to replace PVC with TPO as I/P skin layer of invisible PAB, the elongation behavior, vacuum thermoforming, thermal, light resistance and low temperature PAB deployment of TPO were investigated. With the elongation properties; 50cN ↑ melt strength, 300mm/s ↑ breaking speed, 200s ↑ breaking time, TPO was vacuum-formed well like PVC. The thermal and light resistances of TPO were superior to PVC. In terms of low temperature airbag test, PVC was fractured with the brittle behavior during the deployment. TPO, however, showed the ductile fracture. And also when TPO was used for PAB cover, the elongation ratio of TPO was also important criterion for the normal break without any interference to I/P part, outside of PAB. The 300∼500% elongation ratio was most preferable.
Technical Paper

The COANDA Flow Control and Newtonian Concept Approach to Achieve Drag Reduction of Passenger Vehicle

2001-03-05
2001-01-1267
In order to reduce total drag during aerodynamic optimization process of the passenger vehicle, induced drag should be minimized and pressure drag should be decreased by means of applying streamlined body shape. The reduction of wake area could decrease pressure drag, which was generated by boundary layer separation. The induced drag caused by rear axle lift and C-pillar vortex can be reduced by the employing of trunk lid edge and kick-up or an optimized rear spoiler. When a rear spoiler or kick-up shape was installed on the rear end of a sedan vehicle, drag was reduced but the wake area became larger. This contradiction cannot be explained by simply using Bernoulli’s principle with equal transit or longer path theory. Newtonian explanation with COANDA effect is adopted to explain this phenomenon. The relationships among COANDA effect, down wash, C-pillar vortex, rear axle lift and induced drag are explained.
Technical Paper

Hyundai Full Scale Aero-acoustic Wind Tunnel

2001-03-05
2001-01-0629
A new Hyundai Aero-acoustic Wind Tunnel (HAWT) has been opened in the Nam-yang Technical Center of Hyundai Motor Company (HMC) since August 1999. This wind tunnel has a 3/4 semi-open jet test section and a closed circuit in order to improve aerodynamic and wind noise and thermodynamic characteristics of vehicles. The HMC technical center had started the feasibility study of full-scale wind tunnel in 1995, to improve the aerodynamic characteristics and to meet fuel consumption regulations. The main purpose of this facility is conduct various kinds of tests on customer driving conditions, including aerodynamic and aero-acoustic tests and engine cooling simulations, etc. The technical specification was made on the basis of HMC engineers' experience of their own model scale and full-scale wind tunnels (like MIRA or DNW) during last 10 years.
Technical Paper

Improvement of Fatigue Strength of Automatic Transmission Gear by Developing Controlled Rolled Alloy Steel

2000-03-06
2000-01-0614
The controlled rolling process has been introduced to increase strength and toughness of alloy steels for the application of transmission gear. Cr-Mo alloy steel containing 0.02% Nb was controlled rolled in the temperature range of 870-970°C, showed fine austenite grain size, about ASTM No.11, resulted from the effects of recrystallization and Nb(C,N) precipitation. To investigate the effects of grain refinement on mechanical properties, several tests were conducted for the newly developed controlled rolled steel and conventional Ni-Cr-Mo alloy steel after carburizing. The new steel showed 2.1 times higher pitting resistance than the conventional steel. Fatigue limits of new and conventional steels were 950 and 930 MPa respectively. Charpy impact energy of new steel was improved about 35% compared with the conventional steel. Consequently, the pinion gear from the new steel instead of conventional one showed enhanced performance, especially pitting resistance, in dynamometer test.
Technical Paper

A Study of Flame Propagation for Different Combustion Chamber Configurations in an SI Engine

1997-02-24
970876
High speed natural light motion picture records synchronized with head gasket ionization probe and in-cylinder pressure data have been made in the transparent engine of different combustion chamber configurations. For knocking cycles, the head gasket ionization current method simultaneously taken with pressure data was able to find the location of knocking occurrence. To investigate the effects of combustion chamber configurations, the flame propagation experiments for pent-roof combustion chamber with center ignition ( Modified Type I engine ) and modified pent-roof ( Type II engine ) combustion chamber were performed with high speed natural light photography technique. The flame propagation of Modified Type I engine represents more uniform patterns than that of Type II engine. The investigation of knocking combustion was also made possible by observing flame propagation with the measuring techniques that use head gasket ionization probe and in-cylinder pressure data.
X